Our 5 year sustainability improvement plan

Shifting to a truly sustainable society is going to be a long process and will require many adjustments both large and small to the way that people live. We here at Sunshine Saved want to do what we can to fast-track this change, and as part of that we have made plans to reduce the carbon emissions of our family’s lifestyle by half within the next five years. Hopefully this will provide some inspiration for others to find their own ways to reduce their footprints. This article builds on the accounting that we did for my family’s 2017 resource consumption, figuring out what we can and will do in the near term to increase the sustainability of my family’s lifestyle, projecting out to 2022. We’ve taken some important steps already but have much more to do.

Everyone is in different circumstances of jobs, income, locale, lifestyle, and family, and that will be reflected in which things they could do to improve sustainability. For us, and for a majority of North Americans, one of the highest priorities is to reduce usage of fossil fuels. And in fact this is the main work that we will do with our 5 year plan, to directly reduce our usage of gasoline, natural gas, and propane.

Overview of our current emissions

The above chart shows our 2017 carbon emissions on the left, and the target for our 2022 emissions on the right. Carbon emissions aren’t the only way that we look at our impacts, but they are very important and easier to measure and quantify than many other things. As you can see for our 2017, the biggest contributors were related to housing, our personal vehicle use, food, and consumer goods. We are targeting each of these in turn as you will see in our action plan below. In 2017 we had emissions of 28 tons of CO2e for a family of four, and the plan for 2022 is to be down to 16 tons of CO2e for our slightly expanded family of five. This would bring us down from 6.9 tons to 3.2 tons per person, more than a 50% reduction.

As you will see below, we are putting our efforts into those things with the most ‘bang for the buck’ both in terms of dollars but also effort. Making changes isn’t easy, so we are trying to really focus on changes that provide big impact with as little effort as possible, as well as those things that we will enjoy or otherwise be able to maintain. For instance, switching to an electric car (or simply a more fuel efficient gasoline powered car) is a single decision that will reap benefits for the lifetime of the vehicle without any further effort. But for something like cutting out plastic packaging, this requires continuous and daily changes in behavior such as only shopping at specialty and bulk stores, losing a lot of convenience and taking more time and constant effort. This isn’t to say that reducing plastic use isn’t a good idea, it is just that other things should probably be prioritized over it.

Finally there is the direct monetary cost. Very few people are going to freely choose a more sustainable pathway that is twice the cost of ‘business as usual’, but there are many ways to go green while also protecting the pocket book. Reducing consumption usually directly reduces costs. Some of the bigger steps may take more cash and planning up front, but they are followed by big savings in the costs of fuel, maintenance and replacement later on. So while we won’t go through all of the finances of our decisions directly in this article, the combination of all of the moves outlined below shouldn’t cost us any more than a business as usual scenario .

Housing in the city of Ottawa

In 2017 we lived in a rented semidetached home (duplex) as outlined in a prior article. We knew that we wished at some point to purchase a home in the city, and sustainability concerns certainly figured prominently in our decision making process. We were able to find the right place and moved into it in mid-2018. This home is another semidetached dwelling, and our half of the building contains a main unit on the upper levels along with an apartment to rent out on the basement level. We are intending to stay in this home until our children are adults, and with a newborn in the summer of 2018 that means we have a good 20 year planning window. This longer timescale makes some sustainability changes more viable; for instance, if we put in higher efficiency appliances or more insulation it is us who will directly reap the long term energy savings.

Reduction in driving – As they say, “location, location, location”. As so many do, one of the main criteria for our new home is how well located it is from the places that we regularly go. In our case, this is school for the kids, work, errands to stores, and the farm. We were able to narrow down to a couple of neighborhoods that would reduce the distance to all of these places, and our new home is now in walking distance from the kids’ schools and a new light rail station that one of us takes to the office. It is also 10 minutes closer to the farm. Altogether, this new location should reduce our driving (already lower than average) by one third or more.

Heating – Our new home came with a natural gas forced air furnace. Around Ottawa this is the default choice for the majority of residential homes, and the same as our prior rental. This is the cheapest option in a typical home in our area and produces a medium level of carbon emissions as compared to other options. This is a new and high efficiency furnace, and we decided that augmenting the existing furnace with auxiliary forms of heating would be the best way to reduce the amount of fossil fuels that we use.

The biggest heating problem in this house on moving in was for the basement apartment. The basement is insufficiently insulated, and so is always significantly colder than the main unit (We would like to re-insulate the space, but this won’t make it into the five year plan,  but should for the 20 year plan). Further, the house’s gas furnace isn’t ‘zoned’, in that it either provides heat to the whole building or none of it. Put together, this means that the basement needs an additional heat source. We considered electric baseboards, but instead have settled on a much more efficient option, a Mitsubishi cold climate air to air heat pump, also known as a mini-split (we’ve discussed heat pumps before here), installed in September of 2018. This heat pump, though a bit more expensive up-front, will use only  a quarter as much electricity as electric radiant baseboards, and will have a very low carbon footprint due to the clean energy grid that Ontario has in place. This heat pump will give the apartment renter full control over the heat in the apartment. It will also provide for some of the baseload heat for the upstairs as much of this heat will rise up from the basement to the upper levels. Only time will tell for the exact numbers, but quick calculations suggest that the heat pump may reduce natural gas usage from the furnace by about a third.

The second way that we will reduce our natural gas use is to do a significant amount of our home heating with wood. This isn’t a solution for everyone, but with working from a home office, enjoying tending a fire, and having a nearly unlimited supply of sustainably cut local firewood, it makes a lot of sense for us. The house currently has a 35 year old fireplace on the main level. Most older fireplaces actually provide little relief on heating bills; they heat up the room that they are in but they also suck vast amounts of warm air from the inside of a home and send them up the chimney. They also burn inefficiently and produce a lot of unhealthy air pollution. However, newer high efficiency wood stoves are another story completely. They tightly control the fire and airflow, allowing them to burn very cleanly as well as do an excellent job of heating a home. In 2019 or 2020, we will swap out the current fireplace for a high efficiency woodstove. If things go as planned, a fire will burn on half the days through the winter, which should further reduce the remaining heating needs of the house by half.

To summarize:

  • The new home is a bit bigger than our 2017 rental, and so we estimate that it will use 50% more natural gas than our 2017 numbers if we make no changes to our behavior. Heat is now provided for 6 people.
  • The combination of a basement heat pump and a regularly used wood stove will reduce natural gas consumption by 2/3
  • Combined, this means that we will use half as much natural gas as we did in 2017,  using 740 cubic meters of natural gas which will release 2 tons of carbon dioxide in 2022
  • This means .35 tons of CO2 per person per year, down from 1 ton per person in 2017, a 65% reduction in natural gas consumption

Our house on the Farm at Manitou Bay 

The home at the farm is off the grid, with electricity produced by solar panels and heating done mostly with propane. With solar panels that are connected to the grid it is easy to sell any extra electricity on to other users, but this isn’t possible off-grid; either you use the power or it goes to waste. So in the first few years this home had no way of using any extra power and it was wasted, but we have figured out a way to change that. We are going to add a smart switch that will turn the power on in some circuits when the batteries are full and then turn off the power when the batteries drain down to about half full. The cost to implement these changes should be paid off in 2 to 4 years in reduced propane costs.

This extra electricity can then be used in ways that allow us to reduce other energy use, in particular the propane heating. In the winter any extra electricity can be directed into a resistance heater which reduces the amount of heating that we have to do with propane. From spring through fall, some of the electricity can be used in an electric hot water heater, bypassing the need to use the current propane water heater. Finally, once we have a plug-in electric vehicle (see below), we can use any additional ‘extra’ electricity to charge that vehicle.

We hope that by using all of this currently wasted electricity that we can cut our propane usage in half. This would bring us down to 200 gallons per year, and reduce CO2 emissions from 3 tons to 1.5 tons per year.

Replacing our vehicles with electric ones

We would be happy going down to one car, but that may not happen in the 5 year plan. This depends in part on what happens with car services (car sharing, Uber, Lyft, the coming of autonomous cars, etc.). Between managing a family with three small children and also regularly traveling to and working out at the farm, we wouldn’t want to give up our vehicles until other options could replace the conveniences of having our own.

What we can do instead is to plan to only buy electric cars from here on out. We will make that switch as soon as electric vehicles come available that can meet four key needs: a range of about 200 miles, big enough for our family’s needs, all wheel drive, and relatively reasonably priced. These cars are certainly on the near-term horizon. There are already several electric vehicles available that meet three of these four criteria, but not all of them. Dozens of new models of electric vehicles from most of the major manufacturers are due to be released by 2021. We eagerly await those vehicles that could serve our needs.

Electric cars are already better for the climate in most jurisdictions, but they are a particularly good choice in Ontario and Quebec. This is because the electrical grid in these provinces produces very little carbon pollution, being mostly powered by hydroelectric and nuclear power plants. This means that almost all of the carbon pollution from owning these cars comes from their manufacturing rather than driving them. An electric car does have a higher manufacturing footprint as a comparable gas car mostly because of the resource intense batteries, but cutting out the gasoline itself still leads to enormous overall reductions in pollution. As the vehicles that we will purchase next aren’t even available yet it is hard to calculate any precise estimates, but my best guess is about a 75% reduction in our vehicles’ total carbon footprint, a very large savings.

Growing our own food

We have a lot of plans for our in terms of forest management and some farming endeavors which are discussed over at our farm page, but much of that work isn’t relevant to anyone who doesn’t manage a larger property. The part that is more applicable to this discussion is food, namely that we are going to grow much more of our own food. Our ambitious goal is to get to half of our family’s food produced directly on the farm. As of the writing of this piece in the fall of 2018, this work is still in its infancy. The orchard was planted just this spring, and the preparatory work for a much larger garden is currently underway. Livestock should become part of the mix by 2022, but may be limited to broiler chickens which we would acquire as chicks in the spring and harvest in the fall.

For all of our farming efforts we are going to be applying the principles of regenerative agriculture, trying to maintain the health of the land and soil as we grow our food. We will use little or no pesticides and intend to use natural fertilization rather than chemical fertilizers. We will further avoid leaving bare soil, which will help to hold soil carbon and reduce erosion. Needless to say, this will reduce the ecological footprint, including the CO2 emissions, associated with our food. If we are able to scale our production to the level of half our family’s food production, it should also reduce the emissions associated with our food by a similar amount.

If you’ve made it all the way through this piece, then you may be interested in seeing numbers used to make our 2022 estimates. They can be found in the table above and are being shown next to our 2017 numbers. It won’t quite be a 50% reduction in absolute terms, but will be over 50% when one considers the per person emissions. Now we just need to carry through with the rest of the plan.

An introduction to the problem of living sustainably

When thinking about solving the problems of sustainability, or any other complex global issue for that matter, it is easy to feel overwhelmed, even helpless. The problems are so large that one wonders whether one person can even have an impact. Don’t despair, there is much that each of us can do. I recommend that you focus on things that you are passionate about, those that you can stick with over time, and those that can make the biggest impact. Don’t tie yourself up in knots of guilt, or make changes to your life that are going to make you miserable, as that isn’t going to be productive. What we really need to do is to rally the support of whole societies, and one of the ways of doing that is to show naysayers that with sustainability you can ‘have your cake and eat it too’. This doesn’t mean that we can all live in mansions and drive massive gas guzzling cars, but we could all have homes that are wonderful to live in with readily available transport to get everywhere we need to go. We also need to accept that moving humanity to a more sustainable trajectory takes time, with the results taking years or even decades. I personally am putting together a 15 year sustainability plan for my family (to be linked once written up more fully).

Just as we must admit that it will be a long road, we are also all at different places upon that path. Someone who is just thinking about sustainability for the first time might be able to dramatically reduce their personal footprint by making those changes that constitute the ‘low hanging fruit’. For someone who has already taken many steps to reduce their own impact, their goal may instead be to convince others to improve their own practices, be it friends and family, or the businesses and government that provide us with our goods and services. People also have different means to act. If you are a renter who works long hours just to make ends meet, it may be harder to make major changes to your behavior than for someone with more time and resources at their disposal. The important thing is that each of us who cares about sustainability and the future of our world acts, and does what they can.

The details to follow about the scope of what must be done are daunting, so I want to mention just a few promising trends. Though we are currently using too much land and releasing too many greenhouse gases, there are technologies coming available that will help to solve many of the problems that earlier technologies have caused. For instance, in the realm of energy, wind and solar are now the cheapest form of energy generation in some places, and both are growing exponentially while starting to displace fossil fuel use. New agricultural technology, such as ‘precision farming’, increases yields while reducing inputs and pollution. Technology can and will do some of the heavy lifting for us, but we still need a culture that will adopt the best of technologies and practices as quickly as possible.

Where are we now? Where do we need to get to?

To understand the basic numbers of sustainability, it helps to describe them at the level of the individual – you, or any person living a modern lifestyle in a rich country. The easiest way to do this is to start with the total amounts of emissions, energy and land use, and then divide that by the number of people (I’ve done a version of this for my own family’s energy use here). This is then the average amount that is used on behalf of each person in a society. Roughly one third of that energy is personal consumption, from building and heating our homes, to driving our cars, to our food, clothes, and electronics. Another third is each person’s portion of the energy used by businesses and organizations that provide us with goods and services – a part of the energy to keep the lights on at your hospital or power a factory is being used on your behalf. Finally, everything that governments do is (at least in theory) on behalf of its citizens, so of all of the energy used to maintain roads or armies or the IRS, a chunk of that is for each and every one of us. Once we know what we are using, we can then compare those numbers with the estimates that ecologists and other scientists can give us about what sorts of levels are actually sustainable. The gap between the status quo and the sustainable level shows us the work we need to do. There are three things that I want you to consider, total energy use, greenhouse gas emissions, and land use (we’ll leave aside other resources such as water for the time-being).

Total energy use isn’t actually something that we need to worry about for its own sake. If we had infinite clean energy, every person could use as much as they want. However, we don’t live in this magical world, and there are greenhouse gas, pollution, and land use costs to all the energy that we use. Tracking energy use is relatively straightforward to do and is highly correlated to greenhouse gases and land use, there are also good records for energy use. In the US, the total consumption of energy per capita is about 230 kilowatt hours (kWh) per day. To put that in perspective, the typical house consumes about 30 kWh a day. Using energy much more wisely and efficiently could allow us, over time, to reduce this total by a factor of 3 or 4 times, down to perhaps 60 kWh per person per day. For a very in-depth dive into energy use both at a personal and national level, see this very informative video by Saul Griffith.

Greenhouse gas production is tightly linked to total energy use, especially considering how much of our energy currently comes from fossil fuels. In 2017, the American per capita production of CO2e (carbon dioxide equivalents) is about 16 tons. The overall global average is 4 tons. The 2015 Paris Climate Accord, agreed upon by virtually every nation in the world, seeks to limit global warming to no more than 2 degrees Celsius. To accomplish this requires that we reduce global per capita emissions down to less than 2 tons CO2e per person. This means that we need to figure out how to reduce our emissions in rich countries down to 1/8, or 12%, of their current level. There is an enormous amount of work to do here. The single most comprehensive examination that I’ve seen of how the world could do this is through a Project Drawdown, which outlines all of the things that could bring greenhouse gas levels down to sustainable levels.

In terms of land use, we need to have space for ourselves and to grow our agricultural and timber products, while at the same time leaving room for all of the non-human species that we share the planet with. With the human population closing in on 8 billion, there are only 5 acres per person of total land area. Humanity has now pushed into just about every nook and cranny of the planet, so we need to be good stewards. Of all that land, about 1/3 is uninhabitable desert, mountain and glacier, 1/3 is agricultural, 1/4 is forest, leaving 1/10 for everything else. Urban areas use about 1/100 of all land. Humanity is already using almost all of the prime territory for agriculture, and there is very little frontier left to grow into, especially since we want to preserve what natural spaces we have left. On top of that the world’s population is still growing, expected to reach 10 billion or more by the end of the century. Put all together, we need to reduce our impacts so that we can provide for the needs of each person on less than 2 acres of land, an area the size of two football fields. This area needs to provide all of each person’s food, as well as many of the other products that they use, wood, paper, leather, cotton, and so on. Optimally we should be cutting in half the amount of land that we are using to provide for each person’s needs.