The inspiration for our farm and Sunshine Saved

I always wanted to own property in the countryside. I loved the hiking, fishing, canoeing, and other related outdoor pursuits. But there is something different when one is the owner, the land manager, and if done right, the steward. When we relocated to Ottawa, the Canadian capital, finding a place outside the city to call our own was something that was at the top of the list. Within a year of our arrival, we found our perfect spot – nearly one hundred and fifty acres of field, forest, and wetland, spread across rolling hills and nestled alongside the Gatineau River. It felt quite wild to me at the time, but they called it a farm. It was little like the flat open farmland that I was used to seeing during my childhood in Minnesota and Wisconsin, where fields run together and sometimes the only trees are those just adjacent to farmsteads and along fencelines. On this property, there was no barn or silo, but rather a few modest hilly hayfields, and a forest where trees were cut occasionally for lumber or firewood. When my wife and I had begun looking for our countryside escape, we thought about what we wanted mostly in terms of lifestyle and recreation. But it is a farm, and we had become farmers.

From the time we purchased the property, my mind was overflowing with the possibilities of what we could do there. Of course, much of my attention was on all of the recreation that our family would be doing, a broad swath of sports, including snowshoeing and cross country skiing all winter, hiking and fishing the rest of the year, a bit of deer and grouse hunting thrown in during the fall. But it was never just about recreation, it was also about stewardship and sustainability, taking proper care of a space, using it in the present, but preserving it for the future. As much as possible, we wanted to live lightly on our new property, preserving the full range of flora and fauna that are found there. The main reason for choosing this particular property was the natural aesthetic of the place, which we wished to preserve. Since I was a young child, I had dreamed of living out in the wilderness, of living off the land. But as I grew to adulthood, I realized that the sort of rugged independence where I would build a house by hand and grow all my own food was not the dream that I was pursuing. I have no desire to be fully separated from the rest of the world; people are social beings, and productive societies always exist by working together, each specializing to use his or her own talents and predilections. We need those goods and services that others produce, but I also knew that we needed to make sure that we, as a world, live in a way that is sustainable so that our children and their children will be able to continue to prosper as we do today.

Real sustainability isn’t only conservation, and leaving all natural places free of human influence. While true nature refuges are critically important, people also need to produce many goods from the land to support themselves. I felt that part of my responsibility was to continue to keep this land productive, to help provide for human needs as well as to be a wild and natural place. A question kept coming back to me: Was our farm, in this rocky and hilly Canadian forest, even capable of being productive enough to support my family and our needs? As I began to work through all of the possibilities, I considered how it was possible to compare them; Should we grow trees or corn? One way to answer these questions was to simply ask which one would yield the highest dollar returns. This is certainly the typical way that farmers make their land-use decisions. While we wished to make a few bucks, concerns of sustainability stayed at the fore, and our main incomes will always be off the farm. I then had an epiphany about our land use planning. It wasn’t the most original, but it is one that is key to land management, and I’ll share it with you: All farming and most sustainable land use is the farming of sunlight, capturing some of those rays and using the energy contained in them. One takes sunlight, and converts it into maple trees or wheat, chickens or deer. So my realization meant that the question that I was asking about providing for my family was really a question about energy. I started to come around to thinking about sustainable land use more broadly as being about energy; how much energy could we capture and use? What kinds of byproducts and waste would be created? Was a farm like ours capable of producing enough to support the energy-intensive modern lifestyle of my family? How much energy does it really take to support a family anyway?

At the same time as we were purchasing our property, we were also busy with starting to design a house that we would build on a hilltop overlooking the river. For years I had also been interested in architecture, particularly green building practices and energy efficiency, and so we decided to design a place that would be incredibly energy efficient from the ground up. We received an extra push for efficiency from the fact that our building site was so far from the nearest power lines that it would have cost a small fortune to run power to our new home. Solar photovoltaics were going to be the only reasonable way to provide electricity. Going with off-grid solar almost automatically puts one in an energy conservation mind-set, because for every extra light or computer you want to power, you need to pony up more cash upfront to install more panels and batteries. Energy of all kinds was going to be at a premium at this location, so we made decisions to reduce use and keep all appliances and mechanical systems efficient. To reduce heating needs, we took inspiration from several different green design movements to incorporate passive solar design and superinsulation to our home. All in all, we reduced by approximately 70% the amount of energy that we will need to use in this home compared to standard construction. In working with an architect and tradesmen of all kinds, I learned the ins and outs of energy flows around and through a home, and in many ways they really didn’t seem so different from the energy flows involved with land use.

While working on both land use planning and home design, I was consulting innumerable sources, on forestry, farming, energy, architecture, and more. As written, each of these sources was aimed primarily at specialists, the professionals who work in these fields. What wasn’t there, and that I yearned for, were some of the threads that tied all of these concepts and practices together. How did each of these fields relate to the human level, an individual, a family? Again, I could see that in each, a common theme of energy use was central to each of these endeavors. Sustainability and renewable energy are tightly intertwined, and I was learning enormous amounts about how these systems worked, and could see a place for sharing this knowledge with others. Much of this website is built on this inspiration and these insights, putting together the ideas and resources that I was searching for on our own path to a more sustainable lifestyle.

Our 5 year sustainability improvement plan

Shifting to a truly sustainable society is going to be a long process and will require many adjustments both large and small to the way that people live. We here at Sunshine Saved want to do what we can to fast-track this change, and as part of that we have made plans to reduce the carbon emissions of our family’s lifestyle by half within the next five years. Hopefully this will provide some inspiration for others to find their own ways to reduce their footprints. This article builds on the accounting that we did for my family’s 2017 resource consumption, figuring out what we can and will do in the near term to increase the sustainability of my family’s lifestyle, projecting out to 2022. We’ve taken some important steps already but have much more to do.

Everyone is in different circumstances of jobs, income, locale, lifestyle, and family, and that will be reflected in which things they could do to improve sustainability. For us, and for a majority of North Americans, one of the highest priorities is to reduce usage of fossil fuels. And in fact this is the main work that we will do with our 5 year plan, to directly reduce our usage of gasoline, natural gas, and propane.

Overview of our current emissions

The above chart shows our 2017 carbon emissions on the left, and the target for our 2022 emissions on the right. Carbon emissions aren’t the only way that we look at our impacts, but they are very important and easier to measure and quantify than many other things. As you can see for our 2017, the biggest contributors were related to housing, our personal vehicle use, food, and consumer goods. We are targeting each of these in turn as you will see in our action plan below. In 2017 we had emissions of 28 tons of CO2e for a family of four, and the plan for 2022 is to be down to 16 tons of CO2e for our slightly expanded family of five. This would bring us down from 6.9 tons to 3.2 tons per person, more than a 50% reduction.

As you will see below, we are putting our efforts into those things with the most ‘bang for the buck’ both in terms of dollars but also effort. Making changes isn’t easy, so we are trying to really focus on changes that provide big impact with as little effort as possible, as well as those things that we will enjoy or otherwise be able to maintain. For instance, switching to an electric car (or simply a more fuel efficient gasoline powered car) is a single decision that will reap benefits for the lifetime of the vehicle without any further effort. But for something like cutting out plastic packaging, this requires continuous and daily changes in behavior such as only shopping at specialty and bulk stores, losing a lot of convenience and taking more time and constant effort. This isn’t to say that reducing plastic use isn’t a good idea, it is just that other things should probably be prioritized over it.

Finally there is the direct monetary cost. Very few people are going to freely choose a more sustainable pathway that is twice the cost of ‘business as usual’, but there are many ways to go green while also protecting the pocket book. Reducing consumption usually directly reduces costs. Some of the bigger steps may take more cash and planning up front, but they are followed by big savings in the costs of fuel, maintenance and replacement later on. So while we won’t go through all of the finances of our decisions directly in this article, the combination of all of the moves outlined below shouldn’t cost us any more than a business as usual scenario .

Housing in the city of Ottawa

In 2017 we lived in a rented semidetached home (duplex) as outlined in a prior article. We knew that we wished at some point to purchase a home in the city, and sustainability concerns certainly figured prominently in our decision making process. We were able to find the right place and moved into it in mid-2018. This home is another semidetached dwelling, and our half of the building contains a main unit on the upper levels along with an apartment to rent out on the basement level. We are intending to stay in this home until our children are adults, and with a newborn in the summer of 2018 that means we have a good 20 year planning window. This longer timescale makes some sustainability changes more viable; for instance, if we put in higher efficiency appliances or more insulation it is us who will directly reap the long term energy savings.

Reduction in driving – As they say, “location, location, location”. As so many do, one of the main criteria for our new home is how well located it is from the places that we regularly go. In our case, this is school for the kids, work, errands to stores, and the farm. We were able to narrow down to a couple of neighborhoods that would reduce the distance to all of these places, and our new home is now in walking distance from the kids’ schools and a new light rail station that one of us takes to the office. It is also 10 minutes closer to the farm. Altogether, this new location should reduce our driving (already lower than average) by one third or more.

Heating – Our new home came with a natural gas forced air furnace. Around Ottawa this is the default choice for the majority of residential homes, and the same as our prior rental. This is the cheapest option in a typical home in our area and produces a medium level of carbon emissions as compared to other options. This is a new and high efficiency furnace, and we decided that augmenting the existing furnace with auxiliary forms of heating would be the best way to reduce the amount of fossil fuels that we use.

The biggest heating problem in this house on moving in was for the basement apartment. The basement is insufficiently insulated, and so is always significantly colder than the main unit (We would like to re-insulate the space, but this won’t make it into the five year plan,  but should for the 20 year plan). Further, the house’s gas furnace isn’t ‘zoned’, in that it either provides heat to the whole building or none of it. Put together, this means that the basement needs an additional heat source. We considered electric baseboards, but instead have settled on a much more efficient option, a Mitsubishi cold climate air to air heat pump, also known as a mini-split (we’ve discussed heat pumps before here), installed in September of 2018. This heat pump, though a bit more expensive up-front, will use only  a quarter as much electricity as electric radiant baseboards, and will have a very low carbon footprint due to the clean energy grid that Ontario has in place. This heat pump will give the apartment renter full control over the heat in the apartment. It will also provide for some of the baseload heat for the upstairs as much of this heat will rise up from the basement to the upper levels. Only time will tell for the exact numbers, but quick calculations suggest that the heat pump may reduce natural gas usage from the furnace by about a third.

The second way that we will reduce our natural gas use is to do a significant amount of our home heating with wood. This isn’t a solution for everyone, but with working from a home office, enjoying tending a fire, and having a nearly unlimited supply of sustainably cut local firewood, it makes a lot of sense for us. The house currently has a 35 year old fireplace on the main level. Most older fireplaces actually provide little relief on heating bills; they heat up the room that they are in but they also suck vast amounts of warm air from the inside of a home and send them up the chimney. They also burn inefficiently and produce a lot of unhealthy air pollution. However, newer high efficiency wood stoves are another story completely. They tightly control the fire and airflow, allowing them to burn very cleanly as well as do an excellent job of heating a home. In 2019 or 2020, we will swap out the current fireplace for a high efficiency woodstove. If things go as planned, a fire will burn on half the days through the winter, which should further reduce the remaining heating needs of the house by half.

To summarize:

  • The new home is a bit bigger than our 2017 rental, and so we estimate that it will use 50% more natural gas than our 2017 numbers if we make no changes to our behavior. Heat is now provided for 6 people.
  • The combination of a basement heat pump and a regularly used wood stove will reduce natural gas consumption by 2/3
  • Combined, this means that we will use half as much natural gas as we did in 2017,  using 740 cubic meters of natural gas which will release 2 tons of carbon dioxide in 2022
  • This means .35 tons of CO2 per person per year, down from 1 ton per person in 2017, a 65% reduction in natural gas consumption

Our house on the Farm at Manitou Bay 

The home at the farm is off the grid, with electricity produced by solar panels and heating done mostly with propane. With solar panels that are connected to the grid it is easy to sell any extra electricity on to other users, but this isn’t possible off-grid; either you use the power or it goes to waste. So in the first few years this home had no way of using any extra power and it was wasted, but we have figured out a way to change that. We are going to add a smart switch that will turn the power on in some circuits when the batteries are full and then turn off the power when the batteries drain down to about half full. The cost to implement these changes should be paid off in 2 to 4 years in reduced propane costs.

This extra electricity can then be used in ways that allow us to reduce other energy use, in particular the propane heating. In the winter any extra electricity can be directed into a resistance heater which reduces the amount of heating that we have to do with propane. From spring through fall, some of the electricity can be used in an electric hot water heater, bypassing the need to use the current propane water heater. Finally, once we have a plug-in electric vehicle (see below), we can use any additional ‘extra’ electricity to charge that vehicle.

We hope that by using all of this currently wasted electricity that we can cut our propane usage in half. This would bring us down to 200 gallons per year, and reduce CO2 emissions from 3 tons to 1.5 tons per year.

Replacing our vehicles with electric ones

We would be happy going down to one car, but that may not happen in the 5 year plan. This depends in part on what happens with car services (car sharing, Uber, Lyft, the coming of autonomous cars, etc.). Between managing a family with three small children and also regularly traveling to and working out at the farm, we wouldn’t want to give up our vehicles until other options could replace the conveniences of having our own.

What we can do instead is to plan to only buy electric cars from here on out. We will make that switch as soon as electric vehicles come available that can meet four key needs: a range of about 200 miles, big enough for our family’s needs, all wheel drive, and relatively reasonably priced. These cars are certainly on the near-term horizon. There are already several electric vehicles available that meet three of these four criteria, but not all of them. Dozens of new models of electric vehicles from most of the major manufacturers are due to be released by 2021. We eagerly await those vehicles that could serve our needs.

Electric cars are already better for the climate in most jurisdictions, but they are a particularly good choice in Ontario and Quebec. This is because the electrical grid in these provinces produces very little carbon pollution, being mostly powered by hydroelectric and nuclear power plants. This means that almost all of the carbon pollution from owning these cars comes from their manufacturing rather than driving them. An electric car does have a higher manufacturing footprint as a comparable gas car mostly because of the resource intense batteries, but cutting out the gasoline itself still leads to enormous overall reductions in pollution. As the vehicles that we will purchase next aren’t even available yet it is hard to calculate any precise estimates, but my best guess is about a 75% reduction in our vehicles’ total carbon footprint, a very large savings.

Growing our own food

We have a lot of plans for our in terms of forest management and some farming endeavors which are discussed over at our farm page, but much of that work isn’t relevant to anyone who doesn’t manage a larger property. The part that is more applicable to this discussion is food, namely that we are going to grow much more of our own food. Our ambitious goal is to get to half of our family’s food produced directly on the farm. As of the writing of this piece in the fall of 2018, this work is still in its infancy. The orchard was planted just this spring, and the preparatory work for a much larger garden is currently underway. Livestock should become part of the mix by 2022, but may be limited to broiler chickens which we would acquire as chicks in the spring and harvest in the fall.

For all of our farming efforts we are going to be applying the principles of regenerative agriculture, trying to maintain the health of the land and soil as we grow our food. We will use little or no pesticides and intend to use natural fertilization rather than chemical fertilizers. We will further avoid leaving bare soil, which will help to hold soil carbon and reduce erosion. Needless to say, this will reduce the ecological footprint, including the CO2 emissions, associated with our food. If we are able to scale our production to the level of half our family’s food production, it should also reduce the emissions associated with our food by a similar amount.

If you’ve made it all the way through this piece, then you may be interested in seeing numbers used to make our 2022 estimates. They can be found in the table above and are being shown next to our 2017 numbers. It won’t quite be a 50% reduction in absolute terms, but will be over 50% when one considers the per person emissions. Now we just need to carry through with the rest of the plan.